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Abstract
In this letter we derive the minimum time needed for any state of a given
quantum system to evolve adiabatically into a distinct (orthogonal) state. This
problem is relevant to deriving physical limits in quantum computation and
quantum information processing. Our result represents an adiabatic analogue
to the Margolus–Levitin theorem (Margolus and Levitin 1998 Physica D 120,
188).

PACS number: 03.67.Lx

In this letter we discuss the question of the minimum time needed for any state of a given
quantum system to evolve adiabatically into a distinct (orthogonal) state. The problem of
maximum speed of quantum dynamical evolution is relevant to deriving physical limits in
quantum computation and quantum information processing. Margolus and Levitin [1] have
derived the minimum time required for the non-adiabatic evolution from any state to an
orthogonal state of the quantum system. Recently, Lloyd [2] has used the Margolus–Levitin
theorem to derive the power/speed limits for the problem of transferring M qubits reliably
using a quantum communication channel. It has been shown that by use of entanglement, the M
qubits can be transferred

√
M times more rapidly for the same power as M unentangled qubits.

In this letter, we consider the adiabatic case and we derive the Hamiltonian corresponding to
the minimum time evolution predicted by the Margolus–Levitin theorem.

Consider a quantum system, which evolves according to the Schrödinger equation

i
d

dt
|ξ(t)〉 = Ĥ (t)|ξ(t)〉 (1)

where Ĥ is the Hamiltonian of the system (we let h̄ = 1). For the non-adiabatic case,
we assume that Ĥ is time independent. Also, we consider the system in the initial state
|ξ(0)〉 = |ψ〉, of mean energy E = 〈ψĤ |ψ〉. The Margolus–Levitin theorem [1] asserts
that it takes at least a time T⊥ � π/(2E) for the system to evolve from |ξ(0)〉 = |ψ〉 to an
orthogonal state |ξ(T⊥)〉 = |ϕ〉. This result complements the time–energy uncertainty relation,

which requires T⊥ � π/(2�E), where �E =
√

〈ψ(Ĥ − E)2|ψ〉 is the energy spread of the
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state. Combining the above two inequalities, one obtains the minimum time required for the
evolution to an orthogonal state [1]:

T⊥ = T (E,�E) = max
( π

2E
,

π

2�E

)
. (2)

Now, let us consider the adiabatic evolution of a quantum system, according to the
Schrödinger equation (1). If the Hamiltonian is time independent and the system is initially in
its ground state, then it will remain in this state. More specifically, if |E0; t〉 and |E1; t〉 are,
respectively, the ground and first excited states of the Hamiltonian Ĥ (t), with energies E0 and
E1, we define the minimum gap between these eigenvalues

ωmin = min
0�t�T

[E1(t) − E0(t)] (3)

and the maximum value of the matrix element of dĤ (t)/dt between the eigenstates as

�max = max
0�t�T

∣∣∣∣∣
〈

dĤ

dt

〉
1,0

∣∣∣∣∣ = max
0�t�T

∣∣∣∣〈E1; t | dĤ

dt
|E0; t〉

∣∣∣∣ . (4)

The adiabatic theorem states that if we prepare the system at time t = 0 in its ground state
|E0; t〉 and let it evolve under the Hamiltonian Ĥ (t) for time T, then

|〈E0; T |ξ(T )〉|2 � 1 − ε2 (5)

provided that

�maxω
−2
min � ε (6)

where 0 < ε � 1 [3, 4].
This result can be used to design a new type of quantum algorithm based on a time-

dependent Hamiltonian [5]. Let us assume that we can build a Hamiltonian for which we
know that the ground state encodes the solution of a problem. Then, it suffices to prepare the
system in the ground state of another Hamiltonian, easy to build, and progressively change
this Hamiltonian to the other one in order to get, after measurement, the sought solution with
large probability. The adiabatic theorem imposes the minimum time it takes for this switch to
be adiabatic.

The adiabatic method has been studied only for the linear interpolation case, where the
‘straight line’ interpolation from initial (Ĥ 0) to final (Ĥ 1) Hamiltonian is taken [5–7]:

Ĥ (s) = (1 − s)Ĥ 0 + sĤ 1 (7)

where s = t/T is the rescaled time and T is the total time (or delay schedule). The initial state
of the system |ξ(0)〉 = |ψ〉 is the ground state, with energy E0 = −E (E > 0), of the initial
Hamiltonian

Ĥ 0 = −E|ψ〉〈ψ |. (8)

We would like to evolve this state, using the linear interpolating Hamiltonian, to the final state
|ξ(1)〉 = |ϕ〉, which is the ground state, with energy E0 = −E, of the final Hamiltonian

Ĥ 1(θ) = −E|ϕ〉〈ϕ|. (9)

We assume that |ψ〉 and |ϕ〉 are not orthogonal: 〈ψ |ϕ〉 = cos(θ). Therefore we can write

|ϕ〉 = cos(θ)|ψ〉 + sin(θ)|σ 〉 (10)

where 〈ψ |σ 〉 = 0. In the two-dimensional space spanned by |σ 〉 and |ψ〉, the linear
interpolating Hamiltonian reads

Ĥ (s, θ) = −E

[
1 − s sin2(θ) 1

2 s sin(2θ)

1
2 s sin(2θ) s sin2(θ)

]
. (11)
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The ground state and the first excited state of the above Hamiltonian are

E0,1(s, θ) = E

2

[
1 ∓

√
1 − 4s(1 − s) sin2(θ)

]
. (12)

Thus the energy gap is given by

ω(s, θ) = E
√

1 − 4s(1 − s) sin2(θ). (13)

Also, it is easy to show that the matrix element of dĤ (t)/dt between the eigenstates is
given by

�(t, θ) =
∣∣∣∣ds

dt

∣∣∣∣�(s, θ) = E

T

∣∣∣∣ sin(2θ)

2ω(s, θ)

∣∣∣∣ . (14)

The extreme values are obtained for s = 1/2:

ωmin(θ) = E cos(θ) (15)

�max(θ) = E

T
|sin(θ)|. (16)

By substituting (15) and (16) into the adiabaticity condition (6), we obtain the minimum
evolution time for the linear interpolation case [5]:

T0(E, θ) = 1

Eε

|sin(θ)|
cos2(θ)

. (17)

A better result can be obtained by assuming that s = s(t) is a smooth function satisfying
the boundary conditions: s(0) = 0, s(T ) = 1 [6, 7]. In this case, the local version of the
adiabatic evolution condition reads∣∣∣∣ds

dt

∣∣∣∣ � ε
ω2(s, θ)

�(s, θ)
(18)

and the minimum running time can be obtained by integration [6, 7]:

T1(E, θ) =
∫ 1

0
ds

�(s, θ)

ω2(s, θ)
= 1

Eε
tan(θ). (19)

However, one can see that when the initial and final states are orthogonal, the minimum
running time becomes infinite:

lim
θ→π/2

T0,1(E, θ) = ∞. (20)

In fact, in the orthogonal case (θ = π/2) the minimum gap is ωmin(π/2) = 0 and the
adiabaticity conditions (6) and (18) are not satisfied. Thus, the adiabatic evolution (based
on the linear interpolation method described above) fails when the initial and final states are
orthogonal.

In what follows we will show that the adiabatic evolution can be done in finite time
by using a simple non-linear interpolation method. There is no reason not to consider non-
linear interpolation. The adiabatic algorithm will work taking any path Ĥ (s), as long as the
adiabaticity condition is satisfied.

We assume that |ψ〉 and |ϕ〉 are orthogonal: 〈ψ |ϕ〉 = 0. Now, let us consider the
following Hamiltonian:

Ĥ (s) = −E|ξ(s)〉〈ξ(s)| (21)

where

|ξ(s)〉 = cos
(π

2
s
)

|ψ〉 + sin
(π

2
s
)

|ϕ〉 (22)
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is the ground state, with eigenvalue E0 = −E(E > 0), and s = t/T ∈ [0, 1].
In the |ψ〉, |ϕ〉 basis, the adiabatic Hamiltonian reads

Ĥ (s) = −E sin2
(π

2
s
)

|ψ〉〈ψ | − E cos2
(π

2
s
)

|ϕ〉〈ϕ| − E sin(πs)(|ψ〉〈ϕ| + |ϕ〉〈ψ |). (23)

Thus, |ξ(s)〉 performs an interpolation from the initial wavefunction |ψ〉 = |ξ(0)〉 to final
wavefunction |ϕ〉 = |ξ(1)〉, and Ĥ (s) performs an interpolation from the initial Hamiltonian
Ĥ 0 = Ĥ (0) = −E|ψ〉〈ψ | to final Hamiltonian Ĥ 1 = Ĥ (1) = −E|ϕ〉〈ϕ|.

The first excited state is E1 = 0. Thus, the energy gap is constant: ωmin = E. Also,
taking into account that

dĤ

dt
= ds

dt

dĤ

ds
= 1

T

dĤ

ds
(24)

the matrix element can be calculated analytically and is given by

�max = πE

2T
. (25)

Thus, the minimum evolution time from |ψ〉 to |ϕ〉, in the adiabatic case, is

T (E) = π

2Eε
(26)

where E is the minimum gap between the first excited state and the ground state of the system.
In this letter we have discussed the question of the minimum time needed for any state

of a given quantum system to evolve adiabatically into a distinct (orthogonal) state. We
have proposed a simple non-linear interpolation method which gives an analogue result to the
non-adiabatic Margolus–Levitin theorem.

Acknowledgments

This work was supported by grants from the Defence R&D Canada and Natural Sciences and
Engineering Research Council of Canada.

References

[1] Margolus N and Levitin L B 1998 Physica D 120 188 (Preprint quant-ph/9710043)
[2] Lloyd S 2003 Phys. Rev. Lett. 90 167902 (Preprint quant-ph/0112034)
[3] Messiah A 1976 Quantum Mechanics vol II (New York: Wiley)
[4] Bransden B H and Joachain C J 2000 Quantum Mechanics (New Jersey: Prentice Hall)
[5] Farhi E, Goldstone J, Gutmann S and Sipser M 2000 Preprint quant-ph/0001106
[6] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308 (Preprint quant-ph/0107015)
[7] van Dam W, Mosca M and Vazirani U 2001 Proc. 42nd Annual Symp. on Foundations of Computer Science

(New York: IEEE Computer Society) pp 279–87 (Preprint quant-ph/0206003)


